Mapping nutrient resorption efficiencies of subarctic cryptogams and seed plants onto the Tree of Life

نویسندگان

  • Simone I Lang
  • Rien Aerts
  • Richard S P van Logtestijn
  • Wenka Schweikert
  • Thorsten Klahn
  • Helen M Quested
  • Jurgen R van Hal
  • Johannes H C Cornelissen
چکیده

Nutrient resorption from senescing photosynthetic organs is a powerful mechanism for conserving nitrogen (N) and phosphorus (P) in infertile environments. Evolution has resulted in enhanced differentiation of conducting tissues to facilitate transport of photosynthate to other plant parts, ultimately leading to phloem. Such tissues may also serve to translocate N and P to other plant parts upon their senescence. Therefore, we hypothesize that nutrient resorption efficiency (RE, % of nutrient pool exported) should correspond with the degree of specialization of these conducting tissues across the autotrophic branches of the Tree of Life. To test this hypothesis, we had to compare members of different plant clades and lichens within a climatic region, to minimize confounding effects of climatic drivers on nutrient resorption. Thus, we compared RE among wide-ranging basal clades from the principally N-limited subarctic region, employing a novel method to correct for mass loss during senescence. Even with the limited numbers of species available for certain clades in this region, we found some consistent patterns. Mosses, lichens, and lycophytes generally showed low REN (<20%), liverworts and conifers intermediate (40%) and monilophytes, eudicots, and monocots high (>70%). REP appeared higher in eudicots and liverworts than in mosses. Within mosses, taxa with more efficient conductance also showed higher REN. The differences in REN among clades broadly matched the degree of specialization of conducting tissues. This novel mapping of a physiological process onto the Tree of Life broadly supports the idea that the evolution of conducting tissues toward specialized phloem has aided land plants to optimize their internal nitrogen recycling. The generality of evolutionary lines in conducting tissues and nutrient resorption efficiency needs to be tested across different floras in different climatic regions with different levels of N versus P availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global change and the functional diversity of cryptogams in northern biomes

Climate change in the (Sub)Arctic is expected to be more extreme and rapid compared to other regions on Earth. At these northern latitudes, cryptogams (bryophytes and lichens) are the dominant vegetation component both in terms of abundance and biodiversity, fulfilling important ecosystem functions such as regulation of hydrology, carbon balance, nitrogen fixation and preservation of permafrost...

متن کامل

Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau

Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N)...

متن کامل

Climate Change-induced Drivers of Plant Communities in Subarctic Peatlands

Climate change in the (Sub)Arctic is expected to be more extreme and rapid compared to other regions in the world (IPCC 2007). Tundra and peatlands are the main ecosystem components at these northern latitudes, which are largely dominated by lichens and bryophytes fulfilling important ecosystems functions (see General Introduction, Longton 1988; Rydin & Jeglum 2006). As both biodiversity and ve...

متن کامل

An Evolutionarily Conserved Signaling Mechanism Mediates Far-Red Light Responses in Land PlantsC

Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and crypto...

متن کامل

Stage-dependent stoichiometric homeostasis and responses of nutrient resorption in Amaranthus mangostanus to nitrogen and phosphorus addition

Stoichiometric homeostasis is the ability of plants remaining their element composition relatively stable regardless of changes in nutrient availability, via various physiological mechanisms. Nutrient resorption is one of such key mechanisms, but whether and how nitrogen and phosphorus homeostasis and resorption in plants would change with growth-stages under variable nutrient supply was unclea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014